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In the literature on questions connected with the rnotion of free 

mechanical systems in a central force field, for instance in Elf, the 

problem of passive stabilization of such systems is formulated, as well 

as that of damping of small external disturbances, a viscous fluid being 

used as the damper. 

Here we consider the problem of the behavior of such a system, the 

stability of its motion with regard to some known parameters, in the 

case when it possesses a cavity filled with a viscous incompressible 

fluid. 

Sufficient stability conditions of circular motion of the mass center 

of the system and the conditions of equilibrium with a system oP cavity 

filled with incompressible viscous fluid are obtained in the paper. The 

form and the method of solution of the stability of motion of rigid 

bodies with a liquid inclusion suggested by Rumiantsev [21 are used. 

For a system which consists of a single rigid body. the sufficient 

Conditions of stability were found by Beletskii [31. 

1. We consider the problem of motion of a free, mechanical system 

which consists of a rigid body with a cavity, filled completely with a 

viscous, incompressible fluid, placed in a Newtonian central field of 

force. 

bet 0 be the fixed attracting center with which we associate a fixed 

system of coordinates c, q. 5. 

'Ibe rigid body and the fluid which fills the cavity is considered as 

a single mechanical system whose kinetic energy is the sum of the kinetic 
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energies of the rigid body and the fluid 2’ = T, + Tzl while the moment 

of ~~~t~ is the #pmetricaf sum of the moments of acts of tbe 
rigid body and the fluid I6 = I(, + K,. Subscript P ZJW~S refers to 
quantities concerning the rigid body and the subscript 2 to quantities 

regarding the fluid. 

Let G be the mass center of the system and R the radius vector from 

0 to G. 

The rigid body without the fluid has mass Hi, the mass of the fluid 

is M,, its density is p and the coefficient of viscosity p*, ‘Ihe mass of 
the system is equal M = Ml +M2. 

Let the origin of the moving system of c~rdi~ates x, y, z he in G, 
and let the direction of the axes be along the principal axes of the 
central ellipsoid of inertia of the system considered, the axes of the 
latter being the principal axes of inertia for both the rigid body and 
the fluid. Thus, if A, B, C are the principal moments of inertia of the 
system, then 

Let the projection of the instantaneous angular velocity of the 

system with respect to the center of mass on the moving axes bs pI qS r. 

Let; 31s note farther* that, as is usual, the orientation of the system 
of ccrard&riate axes x, yI z with respect to axes g, q, 5, is given by a 
system of direction cosines ai, pi, yi (d. = 1, 2, 3), and with respect 
to the radius vector R by the system of direction cosines p1 @“, 8”: 

The moment of rn~nt~ with respect to the fixed center is equal to 

K ~=RxMY+-K (R”=~“+rla$_$,V=j”+i78Jy~~ 

where K E K, + K, is the moment of momentum of the system evaluated with 
respect to G, in its motion with respect to the Koenig system of coordi: 
nates. The projections on the mo&g axes 23x-e 

Ku = A,P, &v = B,q, ju, = C,r 

If u, v, tu designate the projection of the moving axes of the rela- 
tive velocity of the fluid as it moves with respect to the rigid body, 
then 
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where 

VX = u + w - Q/, v, = u + rx - pz, v* = al + py - qx 

and the integration is carried out over the total volume of the fluid T. 

Introducing the notations gt, g,, gz for the projection on the moving 
axes n, y, z of the angular momentum vector of the relative motion of the 
fluid (with respect to the shell) we may finally write 

K 2x=-&p-l-g%, &a, = Bag + g, , &a = Gr + gx 

& =p~(~-xu~~~, gv=p~(~u-~)~~, gx=~~(xu-yu)~~ 
+ f 5 

‘Ihe force function of the forces acting on the system, is determined 

by the integral (p is the gravitational constant) 

u= lLdm s 
M Pm 

(pm2 = IT2 + 2fi (43 + YP’ + $q + x2 -t- y2 + 2”) 

Let us consider the problem in a limited form, in the sense that in- 
stead of considering the indicated force function U we will consider an 
approximate expression obtained by expanding U in a series of powers 

x/R y/R 44 neglecting all terms 
which is justified by the fact that 
dimension 2 is much smaller than R, 

higher than of the second order, 
for real systems their characteristic 
namely of the order l/R w 10” -t lo@. 

Thus, we have [31 

fJ+_ +&(Ag2+ Ap'2+CP"2)++& A+;+c (1.1) 

Now we can write the equations of motion of the system considered 

hf.&Zag, hf;; = ‘$ ) &“i, = ‘$ (1.2) 

A~+(C--B)q~+~+qgx-~g,=121, fxyz, ABC. w) (1.3) 

~Kt+u+!ls- ~‘Y)+4(V,+w+py-qx)--((I/,+v+rx-p~)= 
= F, +g+VAU @YZ‘ uvw, PP') l 1 + (1.4) 

Here the symbols (nyz, ABC, pqr) and (nyz, WUJ, pqr) indicate that 
two other equations are obtained by simultaneous circular permutation of 
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the indicated letters, and dots above the variables indicate differ- 
entiation with respect to time. Equations (1.2) to (1.4) must be supple- 
mented by the equation of incompressibility 

and the conditions on the walls S of the cavity 

u=v=w=o U.6) 

‘l&e equations of motion are completed by the well known kinematic 
equations of Poisson for the direction cosines. The notations in (1.2) 
and (1.3) are the usual ones: P is the hydrodynamic pressure, us, u y’ vz 
are the projections of the velocity of G on the moving axes; Fx, F,, Fz 
are the projections on the moving axes of the Newtonian force, and 
I!&~> My, Mz are the projections of the gravitational moments which in the 
approximation selected are of the form 

(ABC, P P’ P”) 

We note that the equations of motion of the problem considered admit 

an integral K, = const and several trivial integrals among which we in- 

dicate only two 

(1.7) 

where yl, y2, y3 are the direction cosines of the <-axis with respect to 
the axes of the moving system. 

Selecting the [-axis as being orthogonal. to the orbital plane, we may 
write the area integral in the following form: 

M (!%I - $1 + (4 + gx) 71 + (Bq + gv) TZ + (Cr + a) 7s = const (M) 

. ?. bet us formulate several relations. Multiplying Equations (1.2) by 
5, n, 5 respectively, Equations (1.3) by p, Q, r and adding the results, 
and multiplying (1.4) by u, V, w; then adding and integrating the last 
expression obtained over the whole fluid volume, adding all the results 
and taking into consideration conditions (1.5) and (1.6) we obtain 

Here 
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2T = M (5” + i” + i?) + A& -I- Blqa + C,ra + A& + B,q2 + C2rs + 

-IT PS~u2+~+~~)d~+2pSl~(qz-~)+v(r~-ppz)+w(py-qqx)ldr 
s + 

It follows from this 

T--<To--UU, (To = T IiD Kl = u l&J 

The quality sign will be valid if the system moves as one single 
rigid body, or if the fluid is an ideal one (cl* = 0). Using transforma- 
tions [23 

o1 = KW i Ag, wa = Kgg I B,, w8 = K,, I C, (2.3) 

The new unknown functions o;(t) are determined if Vz, Vy, Vz are 
known. Let us introduce further unknowns 

Vr = V, f w$j - wsz, V, = V, + or2 - wg5, v, = v, + urf$--w$/ (2.4) 

By definition of oi(t) 

f&V,- zV$dz = p\(zV,- Cc&) dz =\p \ (BY, - ?JV,) dz = 0 
J 
T 

Obviously, 

(i = 1, 2, 3) 

Now a part 

motion of the 
is reduced to 

J J 
t z 

V,, VY, Vz will be determined if oi(t) and Vi(t, x, y, z) 
are known. 

of the kinetic energy of the system, associated with the 
fluid with respect to the mass center of the whole system, 
the convenient form 

2T,4+ 
+ 

(2.5) 

If the spherical coordinates of the mass center 

E = Rcosll,cos~, tl = Rcos%sincp, 

then the first integrals of the equation of motion 

written finally in the form 

are int reduced 

c = R sing 

of the system may be 

M (h! 4 _t R3” + R2 cos”~9;“) + Alpa + B1q2 _t C,r2 + 
Kz; X 2 K = 

+z+ 2 + $ + p 1 (L’: +Vz2 +V:) dz - 2U < oonst 
-c 
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MI?’ ax2 J?cp+(A,~-t&) 71 + U&q + G,,) rs + (C,r + Ks) rs = cone 

(3” + p’* + p”2 = 1, T12 + ?-22 + ys2 = 1 

3. The equations of motion of the system considered admit the 
particular solution 

P 9=% = r - w, u=v=w=o 

p = p” = 0, p’ = 1, Kzs = K2y = 0, K,, = C,o (3.4) 

rr= 72 = 0, rs = 1, R = R,, ii = 0, 9 = Q, $ = 0, 9; = o 

‘Ibis particular solution corresponds to the motion of the system on a 
circular orbit R =R, with constant angular velocity o, such that the 
principal central axes of the system are along the tangent, the radius 
vector and the binormal of the undisturbed orbit. The fluid is hereby at 
rest with the body, i.e. the system moves as a single rigid body. 

Let us investigate the stability of the undisturbed motion of the 
system with respect to the variables 

P, 99 r; P, 6 p"; ~1, 'r2, 'I'S; 4~ K2u9 K2,; .& A, 9, 4, i (3.2) 

Using the same notations for quantities which in the ~distur~d 

motion have trivial values, we set for the disturbed motion 

r = o -i- xi, p’ = 1 + xs, rs = 1 + x2, Kez = C,o + x4 

R = R, + xc, fi = &, ‘p=o+& 

In the undisturbed motion we had also the formula 

01 = 02 = 0, mg = 0, Ir, = v, =vv, = 0 

‘lhe equations of perturbed motion of the problem considered admit the 
first integrals 

w, = Mica + MR&i2 + MR,gk,2 + (MO” - ‘g + ‘s.- 

_ w(A+B+C) x&$ 
Rob 1 - MRoWV + A,p2 + B,q2 + C,xt + 
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+ 2MR,2wk, + (2MRow2 + ‘g - g + 3p @ zof + “) x6 + 

+ X+0x, + 2wx, + $-f x8 + 0 (3) \< const 0 (3.3) 

W, = Mox,2 - MRo2N2 + 2MR,x,k + AN, + K,,T, + 

+ B,u, + K2ur2 + x4x2 + c,x,X, + MR,2k, + 

+ 2MR,wx, + C,X, + x4 + Cwx,+O (3) = const (3.4) 

W, = f3” + iY2 + xl + 2x, = const (3.5) 
W4 = y12 + y22 + x22 t 2x, = const (3.6) 

By 0 (3) we indicate terms not lower than of third order of magnitude 
with respect to the perturbation. 

For the disturbed motion dW,/dt < 0 is valid (2.1). 

Let us consider a function of the variables of the problem, con- 

structed by the method of Chetaev [4] in the form of a relation of the 
first integrals of the equation of motion 

w=w,-z,w,-g w, + cwzw4 + aW,2 + hW,z + 6W,2 = (3.7) 

= Mi; + MR&i2 + ikiR,z~~$~ + +$A-B)~+$$(c-B)~~~+ 

+ Ag2 - 2wA,py, + Cw2r: - 2wy,Kzx + -&K& + Blq2 - 

- 2wB,~r, + c&,2 - 207&z,, + +2; + 4hx: + 

2@4 
+(v- 5w2M + 4uM2R,,=w2 1 

xi2 + (MR,,” + aMaRo4) ;Ee2 + 

+ (Co2 + aC2w2 + 48) x,B+(C1+uC19x?+(&+u)x18~ 

- ‘g x6x8 + 4uMaR,%x,i, + 4uMRoCw2x,x2 + 

+ 4~MR&~wx,x, + 4uMR,,wx6x4 + 2uMRo2Ccox& + 

+ 2uMR,ZC,x,d, + 2uMR,2x4i, + (- 2wC1 + 2uCC,w) x1x2 + 

+ (- 20 + 2uCw) x2x4 + 2uC,x,x, + p 
s 

(Vrs +V,B +V,“) dz + 0 (3; 
+ 

Here u, A and 6 are constant quantities. ‘lbe angular velocity of-&e 
motion of the mass center of the system is determined by the relation 
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(3.81 

0y Sylvester’s criterion, for the function W to be positive-definite 

the following conditions are necessary and sufficient: 

A>B, C>B; C>Ar, C> A, f A,; C >& C>%I-13, (3.9) 

and further, the diagonal minors must be positive for 

ll~jll (hij = hjif (i,j=1,...,6) (3.10) 

h 2PM ----_dikf+ 4aMaR,W, 11 - Roa 
h WJ 
12=---r 

R04 
hts= 2uil!i2&3w 

h 1, = 2aMR,,Cwa, hi, = 2aMR&&w, h,, = 2uMR,w 

h 20 = 4k b, = h,, = hzr = h,, = 0 

h, = MRO” + aMaR:, h,, = aMR,aCo, h, = oMR,zC, 

j/,,, 5 aMR,a, h,, = CUP + oCawe + 48, h,, = - WCI + aCC,o 

h !l(I =-w+ucw, h6& = Cl + cc?, h,, = G, ha = -& + 6 

A suitable selection of the constants o, h and 6 may insure the 
positiveness of these minors, whereby the inequalities obtained are not 
essential and limit only the selection of the constants indicated. The 
inequalities (3.91, however, give jointly 

C>A>B (3.11) 

‘Ilus, if C > A > B, then u, h and S may be selected such that the 
quadratic integral W will be positive-definite with respect to the vari- 

This will be 

in place of the 

6 29, 71, 72, z2, Gx~ K2Y, &?a x4* 51, k, 91 d, &I 

Liapunov’s function for the problem. Indeed, dW/dt, taken 

equation of disturbed motion, will not be positive as 
follows from Equation (2.1). And this, in accordance with Liapunov’s 
stability theorem, allows us to estimate the stability of the indicated 
undisturbed motion (3.1) of the rigid body with a cavity, filled with a 
viscous, incompressible fluid. 

The sufficient stability conditions obtained coincide in their form 
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with the sufficient conditions of the stability of the system consisting 

of a single rigid body [3], but in the case considered 

If for a single rigid body, which which, for instance, A, > C, > D1, 
condition of the type (3.1) is not satisfied, then it is easily seen that 
for a rigid body with a cavity, filled with a fluid, selecting the cavity, 
such that C, > A, ,> B,, the satisfaction of conditions (3.10) may be 
achieved, conserving the mass geometry of the rigid body itself, which 
might be necessary for other reasons. 

!Ye note that the sufficient stability conditions found do not include 

terms related to the viscosity of the fluid; they merely limit the 
selection of the mass geometry of the system. 

The results obtained not only give the sufficient stability conditions, 
but allow broader conclusions to be drawn, which are based on the theorem 
of Zhukovskii [51. 

Zhukovskii has shown that in the presence of a relative motion of the 
fluid, the energy of the system is dissipated (this follows from (2.1)), 
and, therefore, two possiblities can occur: either the energy of the 
system will always decrease and the system will finally come to rest, or 
the system will approach a pure rotation with constant angular velocity 
around one of its principal axes of inertia as one single rigid body. ‘lhe 
first possibility is excluded because the area integral (1.13) exists. 

Consequently, if the vector K, is unperturbed, then any perturbing motion 

corresponding to this condition will asymptotically approach that 
consideration in the problem. If, however, the vector K is disturbed, 
then the disturbing motion approaches asymptotically a certain new steady 

motion corresponding to the changed moment of momentum. 

In conclusion the author wishes to thank V.V. Ilumiantsev for his 

interest. 
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